在各类施工现场,安全帽的佩戴是保障工人生命安全的重要措施。为了确保工人正确佩戴安全帽,安全帽检测算法发挥着关键作用。而在实际应用中,结合AI智能分析网关V4与EasyCVR视频汇聚智能分析平台,更是能将安全帽检测的效果发挥到极致。
例如,在某大型建筑工地,通过在施工现场安装多个摄像头,并将这些摄像头接入安防监控EasyCVR视频汇聚平台。EasyCVR视频汇聚平台凭借其强大的兼容性和高清视频流接入能力,能够稳定地接收来自不同品牌摄像头的图像数据。同时,利用AI智能分析网关V4安全帽检测算法对平台上的视频图像进行实时分析。
常见的安全帽检测算法有以下几种:
其一,基于目标检测的算法。利用深度学习中的目标检测模型,如YOLO和FasterR-CNN等,先检测出图像中的人,然后再进一步判断人的头部是否佩戴安全帽。这种算法能够快速准确地定位人和安全帽的位置,对于复杂场景下的检测具有较好的效果。
其二,基于特征提取的算法。通过提取安全帽的颜色、形状等特征,与预先设定的安全帽特征模板进行匹配,从而判断是否佩戴安全帽。这种算法相对简单,但对于特征不明显或被遮挡的情况,检测准确率可能会受到一定影响。
其三,基于深度学习的分类算法。将图像中的人分为佩戴安全帽和未佩戴安全帽两类,通过大量的训练数据让模型学习两类图像的特征差异,从而实现准确分类。
算法对采集到的图像进行预处理,包括图像增强、去噪等操作,以提高图像的质量和清晰度。接着,利用深度学习模型对图像进行特征提取。这些模型经过大量数据的训练,能够准确地识别出图像中的人和安全帽。
判断工人是否佩戴安全帽是算法的核心任务。算法会分析图像中每个人的头部区域,检测是否存在安全帽。如果在头部区域检测到安全帽的特征,就判定该工人佩戴了安全帽;反之,则判定为未佩戴。
为了提高检测的准确性和可靠性,安全帽检测算法还会考虑多种因素。例如,算法会根据不同的施工场景和环境进行自适应调整,以适应不同的光照条件、背景干扰等。同时,算法还可以区分不同颜色和款式的安全帽,提高对安全帽的识别能力。
一旦检测到有工人未佩戴安全帽,算法会立即触发警报机制,警报信息可以以多种方式呈现,如发出声音警报、在监控屏幕上显示提示信息等,以便现场管理人员及时采取措施,督促工人正确佩戴安全帽。
在另一个工厂车间场景中,同样借助智慧工厂/视频综合管理EasyCVR视频汇聚安防监控平台和安全帽检测算法,实现了对工人安全的有效监管。管理人员可以通过平台远程查看车间内的实时情况,确保每一位工人都遵守安全规定佩戴安全帽。
以下是一些常见的安全帽检测算法的开源代码及相关项目:
基于YOLOv5的安全帽检测:
项目